
LCC SHIELD
User Guide

 Build low-cost, custom LCC Nodes utilizing an Arduino UNO form factor shield and
your code. The possibilities are endless.

Contents

1.TERMS & DEFINITIONS...3

2.FEATURES & CAPABILITIES..4

3.WHAT CAN I DO WITH THIS PRODUCT?..5

4.INSTALLING THE SHIELD..6

SPI Bus Usage ..6

5.UNO & MEGA I/O PIN USAGE..7

6.POWER REQUIRMENTS...8

Powering from LCC Bus...8

Powering from Arduino Supplies...8

7.CONFIGURING THE LCC INTERFACE..9

LCC Terminator..9

8.CONFIGURING NECESSARY SOFTWARE...10

Installing LibLCC Through the Arduino Library Manager...10

LibLCC – Additional Information...12

9.ACCESSING THE 256K SPI EEPROM...13

10.RECEIVING DCC DATA FROM THE LCC ALT PORT..16

11.CONFIGURING & OPERATING THE ON-BOARD LEDS...17

12.EXAMPLE CIRCUITRY FOR INTERFACING..18

Interfacing with 12V input...18

Switch input example..19

Multiple Output LEDs...19

13.SHIELD SCHEMATIC DIAGRAM...20

Snowball Creek Electronics

2081A Perkins Rd.

Grand Forks, B.C. V0H 1H1

CANADA

www.snowballcreek.com

Snowball Creek Electronics 2 of 20 LCC Shield User Guide – Rev 2

http://www.snowballcreek.com/

1. TERMS & DEFINITIONS

LCC

Layout Command and Control® (or LCC for short) is an NMRA standard for a layout
control bus. The standards are created by the OpenLCB group, and then adopted as
a standard by the NMRA. This open standard is designed to let all manufacturers
connect to the layout control bus and interoperate with each other. For additional
information, visit www.openlcb.org.

SPI

Serial Peripheral Interface (SPI) is a standard (with many variants) for synchronous
serial communication, used primarily in embedded systems for short-distance wired
communication between integrated circuits.

Snowball Creek Electronics 3 of 20 LCC Shield User Guide – Rev 2

2. FEATURES & CAPABILITIES

Isolated LCC Interface

This allows minimum current draw from your LCC bus. The UNO plus any loads
you wish to add are powered from your UNO supply, not the LCC bus.

DCC Receiver Circuit

This will send the isolated DCC data stream from the LCC ALT port pins to an
UNO digital I/O pin. Can be disabled to gain the I/O pin for other uses.

256Kx8 EEPROM Included

Use the extra SPI accessible 256K memory to store CDI, data, or code.

Factory Installed LCC ID

Includes its own unique LCC ID programmed into EEPROM by the factory.

LCC Bus Terminator

Built-in LCC bus terminator. Just set jumper to enable.

Flexible Power Source

Able to be completely isolated from the LCC bus and use the Arduino power
supplies, or the entire Arduino plus any shield(s) can be powered from the LCC
bus.

Two on-board LEDs

Two programmable LED indicators provided. Optionally, you can disable the
two LEDs to gain the additional I/O pins for other uses.

Designed to be used with LibLCC

LibLCC is a C library for LCC that runs on Arduino® and is available through
the Arduino Library Manager.

This Arduino® compatible shield has all the hardware required for you to
connect an Arduino® UNO or Arduino® Mega to an LCC (Layout

Command and Control®) bus.

Snowball Creek Electronics 4 of 20 LCC Shield User Guide – Rev 2

3. WHAT CAN I DO WITH THIS PRODUCT?

This product is intended for users who are familiar with Arduino® and want to create their
own software. For example, custom logic running on the Arduino® can be used to perform
more complicated automation than is normally available using standard commercial products.

With the input and output (I/O) of the Arduino board, plus the LCC Shield, you now have all of
the hardware necessary to produce custom LCC nodes. Nodes that can produce and
respond to LCC events can be programmed to perform virtually any function you may need
for your model railroad.

This product is designed to be used with LibLCC, a C library for LCC that can be used on
other operating systems(e.g. Linux) in addition to running on the Arduino®. Because LibLCC
is available through the Arduino Library Manager, examples are available as normal
Arduino® sketches. Currently available examples are:

• Simple IO board

• LCC computer interface

• DCC packet decoder

This shield is also compatible with Alex Shepard’s NmraDcc Arduino library, allowing for DCC
packet decoding.

The shield itself should also be compatible with the reference OpenLCB single-thread
implementation of LCC.

Snowball Creek Electronics 5 of 20 LCC Shield User Guide – Rev 2

4. INSTALLING THE SHIELD

The LCC Shield installs just like any other Arduino shield. Align all of the pins on the shield
to the headers on the Arduino.

Keep in mind, you will need to align the 6-pin ICSP header pins as well.

Press the shield onto the Arduino board. Verify all of the pins are securely seated into their
associated receptacles.

Once installed, you may mount other shields as needed. Make sure the pins used for the
LCC shield will not also be used on other shields (if installed).

SPI BUS USAGE

Note that because of how the SPI bus works on the Uno vs. Mega, the Arduino built-in LED is
only available to be used on the Mega. The built-in LED on the Uno will flash when the SPI
clock is active (ie. whenever there is a data transfer happening over SPI).

The LCC Shield uses the 6-pin ICSP header for access to the Arduino SPI port. On an Uno,
these pins are also connected to D11, D12, and D13. Keep this in mind when you are
selecting I/O pins for your device.

Refer to I/O Pin Usage table.

Snowball Creek Electronics 6 of 20 LCC Shield User Guide – Rev 2

5. UNO & MEGA I/O PIN USAGE

Pin Number Uno Pin Usage Mega Pin Usage

D0 Serial RX Serial RX

D1 Serial TX Serial TX

D2 MCP2518 IRQ MCP2518 IRQ

D3 DCC Signal. Cut SB1 to use as GPIO DCC Signal. Cut SB1 to use as GPIO

D4 GPIO GPIO

D5 LED. Cut SB2 to use as GPIO LED. Cut SB2 to use as GPIO

D6 LED. Cut SB3 to use as GPIO LED. Cut SB3 to use as GPIO

D7 Memory Chip select Memory Chip select

D8 CAN chip select CAN chip select

D9 GPIO GPIO

D10 GPIO GPIO

D11 MOSI. Unavailable as GPIO. GPIO

D12 MISO. Unavailable as GPIO. GPIO

D13 SCK. Unavailable as GPIO. GPIO / Built-in LED

A0 GPIO / Analog GPIO / Analog

A1 GPIO / Analog GPIO / Analog

A2 GPIO / Analog GPIO / Analog

A3 GPIO / Analog GPIO / Analog

A4 GPIO / Analog / I2C SDA GPIO / Analog

A5 GPIO / Analog / I2C SCL GPIO / Analog

• All remaining I/O pins not listed here are available as GPIO.

Snowball Creek Electronics 7 of 20 LCC Shield User Guide – Rev 2

6. POWER REQUIRMENTS

Because the shield is designed with an isolated CAN interface, a powered LCC bus is
required in order for any packets to be received or transmitted. This isolation circuitry should
draw less than 20mA. Note that the board is conservative in its labelling, showing a 50mA
draw. If you power the Arduino from the LCC bus as well, the power requirements may be
higher. An Arduino Mega powered from the LCC bus is expected to draw around 80mA of
power, but may be higher or lower depending on any auxiliary circuitry running from the
Mega.

POWERING FROM LCC BUS

To power the shield and the Arduino board (and all connected loads!) from the LCC bus port,
install jumpers JP2 and JP3. By default, these jumpers are NOT installed. JP2 and JP3
connect ground and +5V from the shield regulator to the Arduino board.

Jumpers shown in 'not installed' position.

POWERING FROM ARDUINO SUPPLIES

In order to have an isolated LCC port, jumpers JP2 and JP3 must NOT BE INSTALLED. In
this mode, the shield LCC port interface circuit is isolated from the other circuitry on the
shield. The SPI CAN interface IC (MCP2518) and EEPROM derive power from the Arduino.
The CAN driver IC is powered from the LCC port. The Arduino can be powered from either
the USB or the barrel connector.

Note: Although no damage will occur, is it recommended to only use one power source at a
time. Do not install jumpers JP2 & JP3 AND have a powered Arduino for extended periods
of time.

Snowball Creek Electronics 8 of 20 LCC Shield User Guide – Rev 2

7. CONFIGURING THE LCC INTERFACE

LCC TERMINATOR

The LCC Shield has it's own built-in LCC bus terminator. To enable the LCC terminator,
simply install jumper JP1. JP1 is located next to the LCC port, and is labeled “LCC TERM”.
By default, the shield ships with JP1 installed.

JP1 shown installed.

Snowball Creek Electronics 9 of 20 LCC Shield User Guide – Rev 2

8. CONFIGURING NECESSARY SOFTWARE

Note: All examples assume the pinout shown in section 5.

Several Arduino libraries are required to operate the LCC Shield. All of these libraries can be
found via the Arduino Library Manager. Required libraries are;

• libLCC , ACAN2517 , M95_EEPROM

INSTALLING LIBLCC THROUGH THE ARDUINO LIBRARY MANAGER

These images were taken with the Arduino IDE(Integrated Development Environment)
version 2.2.1 running on Linux, but other platforms(Mac OS, Windows) are similar.

1. Open up Arduino IDE. With a blank project, the IDE should look something like this:

Open the Arduino Library Manager by either going to Tools→Manage Libraries… or by
clicking the Libraries button on the left side of the IDE.

Snowball Creek Electronics 10 of 20 LCC Shield User Guide – Rev 2

Search for libLCC and press the “INSTALL” button.

Now that the library is installed, you may also open up examples and look at them. You may
access the examples at any time by going to File→Examples→LibLCC→(selection).

Snowball Creek Electronics 11 of 20 LCC Shield User Guide – Rev 2

LIBLCC – ADDITIONAL INFORMATION

Note that all of the examples for LibLCC utilize the ACAN2517 library from Pierre Molinaro in
order to interface with the MCP2518 CAN controller chip. This library is also available
through the Arduino Library Manager, and may be installed in the same way as LibLCC.

In addition to the ACAN2517 library, the M95_EEPROM library is used in order to handle the
communications with the EEPROM chip on the shield. This library is also available through
the Arduino Library Manager.

Now that the LibLCC library and dependencies are installed, programming can begin. We
recommend looking at the “Simple Node” example first, as that will initialize the node with a
constant LCC ID and send out an event whenever pin D4 changes state(high→low,
low→high).

Some important notes on the design of LibLCC:

• The library is designed as a C library. Because of this, it does not follow the same
style as other Arduino libraries. If you are familiar with modular C code it should make
sense. The reason for a C library is to make it adaptable from high-level
systems(such as Linux) down to small micro controllers.

• Reading and writing are handled by callbacks

◦ In order to push data to the library, you must call lcc_context_incoming_frame with
an lcc_can_frame when a frame is available

◦ The library calls a callback when it has a frame to write to the bus.

◦ Because of the above points, it is adaptable to any concrete implementation of
sending and receiving CAN frames.

• You may create different contexts in order to handle different parts of the LCC spec.
When using an Arduino, these contexts are statically allocated. Due to the way that
GCC works, if you do not create a context it will not be used, and thus will not take any
memory. Contexts are:

◦ Datagram context – handles reading/writing datagrams

◦ Memory context – handles reading/writing datagrams. Required in order to send
CDI information to a querying node.

◦ Event context – handles sending and receiving LCC events

Snowball Creek Electronics 12 of 20 LCC Shield User Guide – Rev 2

9. ACCESSING THE 256K SPI EEPROM

The SPI EEPROM may be accessed by creating a new M95_EEPROM class as so:

static const byte EEPROM_CS = 7;
M95_EEPROM eeprom(SPI, EEPROM_CS, 256, 3, true);

The layout of memory in the EEPROM is application-defined. The specific EEPROM chosen
has a 256-byte read-only page that is factory-programmed with the following information:

Offset Length(bytes) Usage Default Value

0 8 Unique LCC ID N/A

8 2 ID page version 1

10 32 Manufacturer Snowball Creek Electronics

42 21 Part Number SCE-230900

63 12 Hardware Version Rev.4

The following code may be used to read and display the LCC ID and other manufacturing
data from the EEPROM:

#include <M95_EEPROM.h>
#include <SPI.h>

static const byte EEPROM_CS = 7;
M95_EEPROM eeprom(SPI, EEPROM_CS, 256, 3, true);

struct id_page{
 uint64_t node_id;
 uint16_t id_version;
 char manufacturer[32];
 char part_number[21];
 char hw_version[12];
};

void print_node_id(uint64_t node_id){
 char buffer[3];
 sprintf(buffer, "%02X", (int)((node_id & 0xFF0000000000l) >> 40));

Snowball Creek Electronics 13 of 20 LCC Shield User Guide – Rev 2

 Serial.print(buffer[0]);
 Serial.print(buffer[1]);
 sprintf(buffer, "%02X", (int)((node_id & 0x00FF00000000l) >> 32));
 Serial.print(buffer[0]);
 Serial.print(buffer[1]);
 sprintf(buffer, "%02X", (int)((node_id & 0x0000FF000000l) >> 24));
 Serial.print(buffer[0]);
 Serial.print(buffer[1]);
 sprintf(buffer, "%02X", (int)((node_id & 0x000000FF0000l) >> 16));
 Serial.print(buffer[0]);
 Serial.print(buffer[1]);
 sprintf(buffer, "%02X", (int)((node_id & 0x00000000FF00l) >> 8));
 Serial.print(buffer[0]);
 Serial.print(buffer[1]);
 sprintf(buffer, "%02X", (int)((node_id & 0x0000000000FFl) >> 0));
 Serial.print(buffer[0]);
 Serial.print(buffer[1]);
}

void setup() {
 struct id_page id;

 Serial.begin (9600) ;
 while (!Serial) {
 delay (50) ;
 digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
 }

 pinMode(EEPROM_CS, OUTPUT);

 SPI.begin();
 eeprom.begin();

 if(!eeprom.exists()){
 Serial.println(F("Unable to find EEPROM: PANIC!"));
 while(1){}
 }

 uint64_t node_id;
 eeprom.read_id_page(sizeof(id), &id);
 node_id = id.node_id;

 Serial.print("LCC ID: ");
 print_node_id(node_id);
 Serial.println();
 Serial.print("ID page version: ");
 Serial.println(id.id_version);
 Serial.print("Manufacturer: ");
 Serial.println(id.manufacturer);
 Serial.print("Part number: ");
 Serial.println(id.part_number);
 Serial.print("HW Version: ");
 Serial.println(id.hw_version);
}

Snowball Creek Electronics 14 of 20 LCC Shield User Guide – Rev 2

void loop() {
 // put your main code here, to run repeatedly:

}

Snowball Creek Electronics 15 of 20 LCC Shield User Guide – Rev 2

10. RECEIVING DCC DATA FROM THE LCC ALT PORT

LCC uses pins 4 and 5 of the RJ45 connector in order to pass the DCC signal to connected
devices. The LCC shield has these pins connected to the Arduino in order to provide DCC
decoding capabilities. The DCC Decode example of LibLCC uses the NmraDCC Arduino
library in order to decode switch commands sent by the command station. The NmraDCC
library is available through the Arduino library manager.

If you are not going to utilize the DCC decoding feature, it can be disconnected, thus gaining
the extra I/O pin D3 for other uses. To disconnect, use a sharp hobby knife (X-acto) and cut
the small trace between the two larger pads of SB1. If you need to re-connect the DCC to
pin D3, cover both pads of SB1 with solder, creating a solder bridge.

If you do not have an LCC command station, you may simply modify a CAT5(or equivalent)
cable to connect pins 4 and 5 directly to your track.

Snowball Creek Electronics 16 of 20 LCC Shield User Guide – Rev 2

11. CONFIGURING & OPERATING THE ON-BOARD LEDS

By default, Arduino header pins D5 and D6 are connected to two on-board LEDs located
near the LCC port connector. If pins D5 and D6 are needed for other purposes, you can
disconnect the LEDs by cutting the small trace between the larger pads of SB2 and/or SB3.
To reconnect, add solder to the larger pads to create a solder bridge.

The following code will turn ON both LEDs.

 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
 digitalWrite(5, 1);
 digitalWrite(6, 1);

Snowball Creek Electronics 17 of 20 LCC Shield User Guide – Rev 2

12. EXAMPLE CIRCUITRY FOR INTERFACING

There are many online sources with examples of how to interface an Arduino with various
inputs and outputs. Here are a few basic circuits.

INTERFACING WITH 12V INPUT

12V input connected directly to Arduino

12V input connected via isolation (recommended)

Snowball Creek Electronics 18 of 20 LCC Shield User Guide – Rev 2

SWITCH INPUT EXAMPLE

Push button switch input

MULTIPLE OUTPUT LEDS

Multiple LED's driven by Arduino & NPN transistor (40mA)

Note: Resistor value depends on power supply voltage, LED current rating, and LED Forward
Voltage drop. The 2N2904 can drive up to 500mA total current.

Snowball Creek Electronics 19 of 20 LCC Shield User Guide – Rev 2

13. SHIELD SCHEMATIC DIAGRAM

Snowball Creek Electronics 20 of 20 LCC Shield User Guide – Rev 2

	1. Terms & Definitions
	2. Features & Capabilities
	3. What can I do with this product?
	4. Installing the Shield
	SPI Bus Usage

	5. UNO & Mega I/O Pin Usage
	6. Power Requirments
	Powering from LCC Bus
	Powering from Arduino Supplies

	7. Configuring the LCC Interface
	LCC Terminator

	8. Configuring Necessary Software
	Installing LibLCC Through the Arduino Library Manager
	LibLCC – Additional Information

	9. Accessing the 256K SPI EEPROM
	10. Receiving DCC data from the LCC ALT port
	11. Configuring & Operating the On-Board LEDs
	12. Example circuitry for interfacing
	Interfacing with 12V input
	Switch input example
	Multiple Output LEDs

	13. Shield Schematic Diagram

